
Exploring UltraSPARC T2 Processor Parallel
Processing Capabilities in Video Streams

Javier Iparraguirre1,2, Claudio Delrieux1, Lisandro Perez Meyer1, and Adrian
Rostagno2

1 Universidad Nacional del Sur, Laboratorio de Ciencias de las Imagenes,
Avenida Alem 1253, Bahia Blanca, Argentina

{javier.iparraguirre,cad,perezmeyer}@uns.edu.ar

www.imaglabs.org
2 Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca

11 de Abril 461, Bahia Blanca, Argentina
arostag@frbb.utn.edu.ar

www.frbb.utn.edu.ar

Abstract. UltraSPARC T2 is a system on a chip. It contains 8 cores
and it is capable of running 64 simultaneous hardware threads. Although
it was designed for server workloads with high throughput requirements,
we tested the architecture using a visual computing application. In this
work we perform image binarization in video streams. We use a serial and
a parallel implementation to test the performance of the parallelization.
An evaluation of the speedup for several screen resolutions of the same
video stream shows that this architecture can also be a good choice for
real-time video streaming and processing applications.

Keywords: Multi-core processing, Parallel processing, Video process-
ing, SMP architectures

1 Introduction

Processing video can be a challenging problem in terms of hardware requirements
[3]. Depending on the requirements of the application, the resources demand
can scale exponentially. Visual application developers are always looking for
new computing alternatives to speed-up the execution times and to be able
to include better processing features in the system. In visual computing, the
faster the system runs, the more vivid the user experience is, which is the most
important asset in these applications.

UltraSPARC T2 is the second generation of a system-on-a-chip (SOC) family
developed by SUN Microsystems [7]. It has 8 cores in one single chip. The pro-
cessor is capable of running 64 hardware threads at the same time. Each of the
8 cores has one floating point unit and two integer units. Typical applications
intended for this design are database server, web server, virtualization, and Java
application server.

The same architecture was tested in different arenas. Part of the design team
showed the capabilities of the architecture [7]. It is possible to find works that

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3355



show the behavior at the operating system level [8] [5]. There are even experiences
using UltraSPARC T2 in Computational Science [6].

In our case, we are interested in exploring the potential of the machine in
visual computing applications. In this work we process a video in several frame
resolutions. So far our main interest is to assess the viability of applying this ar-
chitecture in real-time video processing applications, and therefore we tested the
system using only simple image processing filters, in this case digital binariza-
tion [4]. The speedup factors that we achieved, as compared to a serial reference
implementation, allows us to conclude that this architecture is a promising al-
ternative in real-time video processing applications.

In the next section we describe the changes required in the original configura-
tion and setup of the server for this application. Section 3 explains the internals
of the testing we performed. The results can be found in Section 4. Finally, we
state the conclusions and future work in Section 5.

2 Machine Setup

For this testbed we used a Sun SPARC Enterprise T5120 Server (www.oracle.
com/us/products/servers-storage/servers/sparc-enterprise/index.html)
. The machine has 32GB RAM memory and 2 SAS drives 146 GB, 2.5 in. By
default, the system had Solaris 10 installed (www.sun.com/software/solaris).

Given the intended application and the fact that some required software
libraries are not available in the original setup of the machine, we installed
Debian GNU/Linux (www.debian.org), and therefore the system is running
the 2.6.32-3-sparc64-smp Linux kernel. We did not tune any of the packages in
the system. All the configurations follow the default parameters defined by the
original distribution.

3 Doing Binarization

In the image processing arena, binarization is the process that divides the pixels
contained in a image into two sets [4]. Based on a threshold level, all the pixels
above it are converted into white and the rest into black. The process needs a
gray-scale image as an input. In case of color images, they have to be converted
into gray-sale before the binarization is applied. In terms of computational re-
quirements, the binarization means to visit all the pixes of the image and decide
if the pixel will be white or black.

We designed an application that opens a video stream, converts each frame
to another gray scale frame, and produces a binarization of the gray-scale frame.
We have two methods to perform binarization. The first one is the regular serial
binarization. The second is a binarization that employs OpenMP[2]. Our appli-
cation use OpenCV [1] to open the stream but we designed out own processing
methods to ensure the correctness in the performance analysis. We used C++
as development language. Figure 1 shows an screen-shot of the application in
development stages.

The parallel implementation of our application consist on accelerating just
the part of the code that produces the binarization. In practical terms, the

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3356



parallel code is equal to the serial one except for the OpenMP directives [2]. We
calculated the total time consumed by the serial binarization and the total time
of the parallel version. As a result, the speedup values is calculated as the serial
time over the parallel time.

Fig. 1. A screen-shot of our application during development stages. The original movie
is in the upper left corner. The same image as gray-scale is in the upper right corner.
The serial binarization is in the lower left corner and the parallel binarization is in the
lower right corner

Big Buck Bunny www.bigbuckbunny.org was used as our test video. It is
possible to download free versions of the movie in several formats and resolutions.
In our case we downloaded the Ogg format streams and we used three different
resolutions.

4 Results

We run the application on the machine and we measure the performance. We
compared the execution of the serial binarization against the parallel version on
the same operation. The same experiment was repeated for three different movie
resolutions. The first resolution was 854x480. The second was 1280x720 and the
last one was 1920x1080. We found that the speedup values were 10.49 for the
lowest resolution, 12.22 for the medium size and 13.74 in the case of the highest
quality video. Detailed information is expressed in Table 1.

Based on the results, it is possible to see that the parallelization scales well
among the cores. Another fact is that the speedup increases with the size of the
image frame. This is an indicator that as the size of the frame increases, the
relative overhead of the parallel threads decreases.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3357



Table 1. Speedup values for each of the available resolutions

Resolution Speedup
854 x 480 10.49
1280 x 720 12.22
1920 x 1080 13.74

There are some factors that are important in the analysis of the results. The
first detail is that binarization only uses integer operations and we are not testing
the floating point features of the processor. Another detail is that we are not
comparing the machine against other computer architectures. We are evaluating
the way an application scales in the same machine.

5 Conclusions and Future Work

We tested the performance of UltraSPARC T2 processing video. We only per-
formed integer operations. The application scaled up to 13.74 times faster run-
ning in parallel mode. The results look reasonable since we are using 8 cores to
perform the computing work.

Our future research will focus on three different directions. The first path
will be testing the machine in other visual applications with more sophisticated
requirements and processing complexities. The second track will orient towards
UltraSPARC T2 floating point capabilities. Finally, we are interested in compar-
ing this machine against x86 architectures and graphic processing units (GPU’s).

References

1. G.R. Bradski and A. Kaehler. Learning opencv. O’Reilly, 2008.
2. R. Chandra. Parallel programming in OpenMP. Morgan Kaufmann, 2001.
3. R. Datta, D. Joshi, J. Li, and J.Z. Wang. Image retrieval: Ideas, influences, and

trends of the new age. ACM Computing Surveys (CSUR), 40(2):1–60, 2008.
4. R.C. Gonzalez and R.E. Woods. Digital image process. Prentice-Hall, Upper Saddle

River, New Jersey, 2002.
5. Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and help-first scheduling

policies for async-finish task parallelism. 2009.
6. Martin Sandrieser, Sabri Pllana, and Siegfried Benkner. Evaluation of the sun

ultrasparc t2+ processor for computational science. In ICCS ’09: Proceedings of
the 9th International Conference on Computational Science, pages 964–973, Berlin,
Heidelberg, 2009. Springer-Verlag.

7. M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hetherington,
P. Jordan, M. Luttrell, C. Olson, et al. UltraSPARC T2: A highly-threaded, power-
efficient, SPARC SOC. In IEEE Asian Solid-State Circuits Conference, pages 22–25,
2007.

8. V. Čakarević, P. Radojković, J. Verdú, A. Pajuelo, F.J. Cazorla, M. Nemirovsky,
and M. Valero. Characterizing the resource-sharing levels in the UltraSPARC T2
processor. In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 481–492. ACM, 2009.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3358


