A Modular Workflow to Dynamically
Instrument and Treat Information in
Multi-Process Environments

Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Frias

Facultad de Ingenieria, Universidad de Buenos Aires.
Av. Paseo Colén 850, PB, (C1063ACV), Buenos Aires. Argentina.
ccarballal@gmail.com.ar
{jhamkal,bcf}@fi.uba.ar

Abstract. This paper presents a workflow in order to generate and col-
lect execution information in multi-process environments, which are suit-
able for simulating and studying private and shared cache organizations.
We have developed a main tool that makes dynamic instrumentation
with PIN, a controller to administrate the execution of processes and
three workflow application modules to generate programs traces, simu-
late cache memories and manage the execution of several programs in
parallel.

Keywords: cache, multi-process, trace-driven simulation, PIN

1 Introduction

The development of new multi-core architectures remarkably increased perfor-
mance of every entertainment, business, and research applications. Next gener-
ation of chip multi-processors (CMP’s) will have hundreds of cores in a single
chip [1]. As a result, designers face the challenge of reducing the increased speed
gap between main memory and the CMP’s [2].

Processors have an internal memory called cache, that works as a buffer between
the core of the processor and the main memory [3].

Some processor architectures have several levels of cache memory. For the sake
of simplicity and performance, they keep some levels of cache as private for each
processor core, while other architectures explore sharing the last level of cache
of different cores to gain performance, and therefore increase the capacity to get
resources from main memory [4].

Cache memory is a very limited resource which makes the program behavior
analysis a key feature to improve and develop the administration of this limited
but useful resource.

To do this analysis, several methodologies and tools are available. One method
analyzes information in a complete simulator (Execution driven simulation). An
example of this is SimpleScalar [5]. This simulator is very configurable and it has

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3286

2 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Frias

been used in many research works. Several tools to improve it and enhance its
features were developed by researchers, but the disadvantage is that all results
are from simulated environment and not from real hardware.

Another type of analysis is trace driven simulation [6], [7]. This technique is
very flexible and it is also widely used in research. But in CMP’s analysis, the
disadvantage of trace-driven simulation is that shows only one possible result
of execution, and the simulation stores the results of the memory accesses to
a file that can occupy several gigabytes of disk even if their are in compressed
formats.

The technique of adding code into an existing source code, or adding an ex-
ecutable binary to gather new information about it is called instrumentation.
Static instrumentation adds new instrumentation code to the program source
code or to the executable binary. Another approach, called dynamical instru-
mentation, adds the new code into the binary while it is executed. Today, the
latter approach is the most applied in several tools like PIN [8] or Valgrind [9].
Intel Corporation [10] is developing a simulator that improves the trace-driven
simulation technique [11]. This new simulator, called CMP$im, can simulate all
memory organizations in a CMP, is very configurable, shows important data
sharing statistics of threads belonging to a multi-threaded and multi-process ap-
plications, and uses PIN to dynamically instrument a binary program.
CMP$im is a major advance in trace driven simulation, that gives researchers
a full tool to simulate several cache organizations and saves storage space from
program traces, but it can’t show processes execution phases behavior in a shared
cache organization.

In CMP’s, shared caches have a great benefit to performance, but also repre-
sent a great challenge for designers, who should improve their administration,
because as multiple and simultaneous processes can access the cache memory si-
multaneously, they should face with new scenarios (which do not exist in private
caches). For example, one process can overwrite the information of another pro-
cess, causing an intra-processor miss [12]. Other factors that spoil performance
are the execution phases which every program has throughout its execution time.
Some applications present low reuse of their data and pollute caches with data
streams, such as multimedia, communications or streaming applications, or have
many compulsory misses that cannot be solved by assigning more cache space.
These programs behaviors reduce the benefits of a shared cache if they are not
well administrated so for their best performance they have to be given the neces-
sary amount of cache [13], [14]. For that reason, new researches have developed
new memory organizations so as to give the executing process the amount of
cache memory to perform as good as possible, without incurring in a perfor-
mance reduction in the other processes that are also running [15], [16], [17], [18],
[19].

In this work the PIN tool is used to gather information of the execution of mul-
tiple processes with the purpose of feeding cache memory simulators and other
analysis tools.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3287

A Modular Workflow to Instrument in Multiprocess Environments 3

2 PIN Environment

PIN is a tool to dynamically instrument programs for Intel architectures. It
was designed to provide a similar functionality as ATOM toolkit [20] for Alpha
processors, and provides the infrastructure for writing tools to analyze programs
called Pintools.

2.1 Pintools

The instrumentation with PIN consists in two major components:

— Instrumentation code.
— Analysis code.

This two codes reside in the same file, a Pintool.

Both codes are represented in a Pintool as routines to be called by PIN when
an executable binary is executed. Instrumentation routines represent the instru-
mentation component, they inspect the code to be generated, research statical
properties and decide, if it is necessary (and where), to inject the calls to the
analysis functions.

The analysis functions gather data about the application. PIN makes sure that
the integer register state is saved and restored as necessary and allows argu-
ments to be passed to the functions, but floating point registers are not saved
nor restored. Therefore, additional support is required in the analysis routines.

2.2 Execution Behavior

PIN can instrument an executable binary even if it creates new processes or
threads. For every new child process created, the child process is instrumented
by the same Pintool that instruments his parent.

The new threads are controlled and synchronized in the Pintool using the API
provided by PIN. The Pintool runs as a plug-in in PIN, being PIN, the Pintool
and the executable binaries in the same virtual memory addresses, hence sharing
file descriptors and other useful information about every running process in the
Pintool.

During its whole execution, a program can change its execution behavior [21], it
can execute completely without requiring to interchange information with any
source, create new child processes and wait information from them, or wait in-
formation about another different process. The operating system can even put
the parent process and/or any of its child processes to sleep.

The behavior previosly described makes the design a major reason to get a ro-
bust, well-proved and flexible workflow without suffering the typical concurrency
problems in these multi-process environments. The usual tools and techniques
cited in the bibliography [22] to resolve concurrency problems like semaphores,
shared memory, messages queues, pipes and other inter-process communication
(IPC) techniques were evaluated and tested during the process of taking a final

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3288

4 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Frias

decision for desing.

To completely understand the concurrency problems we are facing, we tested
small and simple programs to see the real behavior of PIN with stand-alone
processes and programs that launch new several child processes using fork and
erecv functions of C++ language [23]. The Pintool used for these tests was a
modified version of the pinatrace tool provided in the examples of PIN develop-
ment kit. The major modification made to this tool was the addition of a log of
every function executed to gather more information of the executed instruction.
The first test was running a simple standalone program to compare PIN in-
formation with the assembly generated code by the compiler. The second test
was running the same program, but launched several times using fork and execv
functions to know how the Pintool works and how the functions for instrumenta-
tion work. With said test we know that a new instance of the Pintool is created
for every single child process.

Other several tests with processes with IPC dependencies showed the expected
concurrency problems cited in the bibliography, but these problems are not re-
lated with PIN or the Pintool functionality. The main problem is to gather
information of every executed process in the correct order avoiding inter-process
data interference.

For example, as every process can create new child processes any time, using
semaphores with shared memory, or message queues to control them, poses the
problem that every new process should get a new identifier to be managed. Also,
as the newly created process will be instrumented by the same Pintool as the
parent process, makes the problem of solving the control of the parent and the
new created process in the same Pintool a chaotic and complex task.

To solve these problems we adopt the Self-Registered process design, described
in the next section.

3 Workflow Design

Bearing in mind the behavior of the different programs that can be executed,
and the final intention of this research, we have designed the tool here in in-
troduced. The tool consists of a Pintool, a process controller and three process
information buffers.

The controller is responsible of the administration and the execution of every
process that is being instrumented by the Pintool, indicating when it can be
executed, but every process has to register itself as an active process in the reg-
istration buffer.

With this scheme of Controller - Self-Registration a workflow capable of ana-
lyzing every execution phase of a program is achieved, avoiding the associated
issues of processes concurrency that we described in the previous section.

The final developed tool consists of a memory address trace generator that can
control the execution of a process and any of its child processes, created during
the execution. The tool was designed to solve the problems above described,

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3289

A Modular Workflow to Instrument in Multiprocess Environments 5

taking into account that new modules can be added for different purposes.

Fig. 1 shows a sequence of the execution of a process:

Pintaol

| | Process | 1 Process Registration Buffer
5 J l

4 2 7
i

Process Available To Run Buffer Controller

‘ Process Data Buffer

Application Module

Fig. 1. Sequence of execution of a process.

1. The process registers in the buffer to be executed.

— 2. The controller gets all registered process to be executed.

3. The controller grants permission of execution to the process registered

earlier.

4. The process is executed. In our tool, only one instruction is executed.

— 5. The executed process puts its information (provided by Pintool analysis

code) in the data buffer.

6. The process registers again so as to be executed, indicating that it is done,

with its previous execution.

7. The controller reads again all registered process to be executed.

— 8. The controller gives a signal to an analysis module so as to process the
data.

— 9. The application module consumes the data from the buffer and processes
it.

— 10. The application module gives a signal to the controller, indicating that

is done with its processing.

3.1 Developed Pintool

The developed Pintool is responsible for the registration of the execution of the
process that it instruments, becoming independent from the controller. This in-
dependence is necessary because otherwise the controller must be responsible for
detecting, all the time, the execution status of the process and its child processes,
that will face the issues described in section 3.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3290

6 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Frias

When the Pintool detects the signal to continue with the instrumentation and
the process execution, it analyzes the executed instruction, obtains the memory
access address of that instruction and writes the information into the data buffer
of the process.

The data obtained from instructions is separated in two files. The name of those
files is the process number and an extension .data if the file contains the mem-
ory addresses accessed by the process, .inst if the file contains the data of the
instruction executed.

The structure of the information sent to the data buffer is as follows:

Process Id | Instruction Address Type of Access Memory Address Size

Fig. 2. Structure of the memory addresses informed by the Pintool.

PROCESS ID: Process Identifier.

INSTRUCTION ADDRESS: Memory address of the executed instruction.
— TYPE OF ACCESS: Type of memory access.

MEMORY ADDRESS: Memory address of the access (virtual).

— SIZE: Memory address size.

Process Id Opcode Instruction Address

Fig. 3. Structure of the executed instructions informed by the Pintool.

— PROCESS ID: Process Identifier.
— OPCODE: Instruction Opcode.
— INSTRUCTION ADDRESS: Memory address of the executed instruction.

3.2 Controller

The controller is an independent executable responsible of initializing the control,
data and registration buffers. After the initialization, it reads the registration
buffer of the processes that are waiting for execution permission, then pools every
registered process giving an execution signal to every one. Once the pooling is
finished, it sends a signal to the application module.

The controller waits until the application module finishes operating with the
information stored in the data buffer and sends a signal to the controller to go

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3291

A Modular Workflow to Instrument in Multiprocess Environments 7

on executing the registered process. The application module can be an external
function, a class inside the controller or an external application that consumes
the information stored in the data buffers with a purpose.

In sections 4, 5 and 6 we will describe three optional modules that can be added
to the tool that we have developed.

4 Workflow Application Module: Trace Generator

The module consists of class that uses Zlib [24] that implements the Lempel-Ziv
(LZ77) algorithm to compress the programs traces on the fly. The module reads
the size of the data files of every process and when the size is bigger than a
parameter stored in a configure file it calls a function to compress the data of
the compression buffer and sends the compressed data to an output file. The
same tool can also be run individually to decompress the data.

Fig. 4 shows a sequence of compressed file generation:

Trace Generstor Process Dats Buffer
] 3
Trace Generator | Process A Process B Process N
| Memory Memory Memory
Bddress Trace | PAddress Trace| Rddress Trace

4

ZLib Buffer
] 2

Buffer Buffer Buffer

Main Application

Address Trace
Filz Controller

Fig. 4. Trace generator module schema.

— 1. The controller gets all registered process that wrote information in the
data buffer.

2. The controller gives the trace generator module the signal that new infor-
mation is available.

3. The trace generator module reads all the information of the data buffer.
4. The trace generator module copies the information to a buffer. If the buffer
is full, it compresses the information and stores it in the zipped file.

5. The trace generator sends the signal to the controller, which finishes read-
ing the data buffer.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3292

8 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Frias
5 Workflow Application Module: Cache Simulator

The cache simulator module is the first step to the goal of simulating a dynamic
reconfigurable shared cache. In this module developed as a class that can be
added in the main controller application, the user can set the cache size, number
of ways and the block size of a cache. The module waits until the controller
gives the signal that is available to read the data buffer and to introduce the
data that is simulated in the cache. The same module can act as a simulator of
shared or private cache. We provide a function to show the hit and miss rate of
every instrumented process.

Once the consumption of data files is finished, the module sends a signal to the
controller to continue the execution of the registered processes.

Fig. 5 shows a sequence of a simulation in a cache:

o ik L
Cache Simulator Moduie Process Data Buffer

Process A Process B Process N
3 Memory Memaory Memory
Cache Simulator Wddress Trace| Wddress Trace| |Address Trace
Buffer Buffer Buffer
N

1
4 2
|

Main Application

Controller

Fig. 5. Cache simulator module schema.

1. The controller gets all registered processes that have written information
in the data buffer.

— 2. The controller gives the trace generator module the signal that new infor-
mation is available.

3. The cache simulator module reads all the information of the data buffer
and simulates the memory accesses.

— 4. The cache simulator gives the controller the signal that it has finished
reading data buffer.

6 Workflow Application Module: Competitive Processes

The competitive processes module is an application that receives as parameters
two or more programs to be executed. For every program, the main process
launches a new child process that calls the system function provided by C++

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3293

A Modular Workflow to Instrument in Multiprocess Environments 9

language to execute it.

Taking into account the behavior of PIN described in section 2.2, we must provide
the instrumentation information about the programs that must be executed,
avoiding information of the processes used to construct the workflow.

To achieve this goal, we implemented a function in the module that stores the
processes ids of the programs that we want to analyse in a buffer. Another
function was added to the controller, only to retrieve execution information of
the processes ids that are registered to execution in the controller buffer and are
stored in the module buffer.

7 Experimental Methodology

To evaluate the correct behavior of Trace Generator and Cache Simulator mod-
ules, we built some simple C programs like “The simple loop model” [25]. The
simple loop model produces a well known pattern of data memory references.
Consecutive memory addresses differ exactly in b bytes, being b the cache mem-
ory block size. This pattern of memory references is repeated many times. Also
cache memory miss rate statistics are well known for this model, especially results
for LRU caches are easy to calculate and can be compared with experimental
results. These programs were executed and the results were analyzed manually.
In case of Trace Generator module, the memory accesses file was compared with
the assembly code. On the other hand, for the Cache Simulator module we com-
pared the output miss rate with theoretical results. In both cases the validations
were successful.

Also we used two representative SPEC CPU2006 [26] benchmarks:

— Bzip2 [27]
— H264 [28]

The compression level achieved for Bzip2 workload were about 40 times, and
35 times for H264 compared to a plain text file. These compression levels can be
improved increasing the size of the data buffers.
In the case of cache simulator module we assume a multi-core system with one
thread per-core and two cores. We developed a model of two level cache hierarchy.
The L1 cache is private to each core and the L2 cache is configured to be shared.
The L1 data cache is 32KB, 8-way set associative, with 64B line size. The L2
cache is 4MB, 16-way set associative, with 64B line size and write-back policy,
and all caches use LRU replacement policy. The results obtained were consistent
with previous published works [29].
The results for the L1 and L2 data caches are showed in Fig. 6, Fig. 7, Fig. 8
and Fig. 9. The x-axis represents the total number of memory accesses and the
y-axis represents the miss rate of the application.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3294

10

Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Frias

Bzip2 - L1 Cache

\
, \

Miss Rate (%)
[=] = P [+ - (Ul (1] =l
B

=T T T I O T T o ot L =IO = O T = T v I T S O
P I B B S T T - T S T ST = R T T S S <« = M

101

Millions of Memory References

Fig. 6. Bzip2 workload miss rate curve for L.1 data cache.

Bzip2 - L2 Cache

50

45
40
£ 35
g 30
EzsIl
'EZO\
15
g \h‘—"l\f\
5 —————
0
O WA o Am o g @~ N onm o o 0 omes N~
ﬁﬁﬁﬂmmmmqqmmlﬂmmhhmmmmg

Millions of Memory References

Fig. 7. Bzip2 workload miss rate curve for L2 data cache.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3295

A Modular Workflow to Instrument in Multiprocess Environments

H264 - L1 Cache

(ISR T -
=

Miss Rate (%)

]

omwo=s 0me dw
—

= 0oy
o ~NNMmom

@ r--—iu:!c)%cnﬂr-
o N W W~ W0 m o m

o wm
T
Millions of Memory References

Fig. 8. H264 workload miss rate curve for L1 data cache.

H264 - L2 Cache

120

100

80

60

Miss Rate (%)

40 M\

20 \-

mvmmmmh.—c\nomog

n om0 W
L I I I AT I S T T R V= T o M~ 0000 oo

Millions of Memory References

Fig. 9. H264 workload miss rate curve for L2 data cache.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3296

11

12 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Frias

8 Conclusion

This article presents a new tool that instruments, controls and treats informa-
tion of the execution of processes in an multi-process environment. The main
tool is made of a plug-in of PIN that collects memory address references, type of
accesses, processes ids and instructions opcodes for every single instruction exe-
cuted by the processes which are controlled by another application that acts as
a scheduler. The information collected is stored in a buffer for general purposes.
The design of the main tool considers the addition of different application tools
for different types of purposes. In the previous sections we showed three differ-
ent modules that we have developed. One section describes the use of the tool
as trace generator of multiple processes. The application reads the executed in-
struction and its memory addresses of every process and flush them to a zip file.
The next module is a cache simulator, which has several configurations like cache
size, number of ways and block size and retrieves information of hits and miss
rates of the executed processes.

The final module executes several programs as new processes that can be ad-
ministrated by the main tool that is useful to recreate workloads from individual
benchmarks.

Binary instrumentation using PIN normally occurs at the speed of native exe-
cution. In our tests, instrumentation speed is slower than PIN because of the
use of the main application controller. For our purposes the main application
controller is essential to manage the execution of every process, but the cost
of lower instrumentation speed must be paid. In the executed tests we control
every single instruction of each executed process, achieving a speed of 0.9 MIPS
for trace generator and cache simulator. Instead of controlling every single exe-
cuted instruction, we increase the execution granularity to hundreds and several
thousands instruccions increasing substantially the instrumentation at speeds
ranging from 1-2 MIPS. As part of on-going work, we are investigating better
techniques to improve instrumentation speed.

9 Future Work

At present, we are working in the design of a shared cache that can be dynam-
ically reconfigured to adapt the size, number of ways and block size of a tile of
memory assigned to a process, so as to improve the performance of every process
avoiding intra and inter process misses.

10 Acknowledgments

This work was supported by the University of Buenos Aires and the National
Council of Scientific and Technical Research (CONICET).

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3297

A Modular Workflow to Instrument in Multiprocess Environments 13
References

1. AMD MultiCore Technology, http://multicore.amd.com

2. J. Huh, D. Burger, Keckler, S.W.: Exploring the Design Space of Future CMPs. In:
Parallel Architectures and Compilation Techniques, pp. 199-210 (2001).

3. Patterson, D.A., Hennessy, J.L.: Computer Architecture. A Quantitative Approach.
3rd edition, Morgan Kaufmann Publishers (2000).

4. Intel software techniques for shared cache in multi core systems,
http://software.intel.com/en-us/articles/software-techniques-for-shared-
cache-multi-core-systems/

5. SimpleScalar, http://www.simplescalar.com/

6. Uhlig, R.A., Mudge, T.N.: Trace-driven Memory Simulation: A Survey. In: ACM
Computing Surveys, vol. 29. (1997).

7. Edler, J., Hill, M.D.: Dinero IV Trace-Driven Uniprocessor Cache Simulator. http:
//www.cs.wisc.edu/~markhill/DinerolIV.

8. Pin, http://www.pintool.org/.

9. Valgrind, http://valgrind.org/

10. Intel Corporation, http://www.intel.com

11. Jaleel, A., Cohn, R., Luk, C., Jacob, B.: CMP$im: A Pin-Based On-The-Fly Multi-
Core Cache Simulator. In: Proc. 4th Ann. Workshop Modeling, Benchmarking and
Simulation, 2008, pp. 28-36. (2008).

12. Srikantaiah, S., Kandemir, M., Irwin, M.J.: Adaptive Set Pinning: Managing
Shared Caches in Chip Multiprocessors. In: ACM SIGARCH Computer Architec-
ture News. vol 36, issue 1. pp. 135-144. (2008).

13. Moreto, M., Cazorla, F.J., Ramirez, A., Valero, M.: MLP-Aware Dynamic Cache
Partitioning. In: International Conference on High Performance Embedded Archi-
tectures & Compilers. Goterborg, Sweeden (2008).

14. Moreto, M., Cazorla, F.J., Ramirez, A., Valero, M.: Explaining Dynamic Cache
Partitioning Speed Ups. In: IEEE Computer Architecture Letters. vol. 6, is. 1.
(2007).

15. Tam D.; Azimi, R., Soares, L., Stumm, M.: Managing Shared L2 Caches on Mul-
ticore Systems in Software. In: Proceedings of the Workshop on the Interaction
between Operating Systems and Computer Architecture. WIOSCA. (2007).

16. Sus, G.E., Rudolph, L., Devadas, S.: Dynamic Partitioning of Shared Cache Mem-
ory. In: The Journal of Supercomputing Publisher. vol. 28, no 1. Springer, Nether-
lands. (2006).

17. Hammoud, M., Cho, S., Melhem, R.: Dynamic Cache Clustering for Chip Multi-
processors. In: Proceedings of the 23rd Intel Conference on Supercomputing. pp.
56-67, IBM T. J. Watson Research Center, New York (2009).

18. Zhang, M., Asanovi, K.: Victim Migration: Dynamically Adapting Between Private
and Shared CMP Caches. In: Computer Science and Artificial Intelligence Labora-
tory Technical Report. Massachusetts Institute of Technology, Cambridge, (2005).

19. Lisa, R., Hsu, S.K., Reinhardt, A.A., Ravishankar, 1., Makineni, S.: Communist,
Utilitarian, and Capitalist Cache Policies on CMPs: Caches as a Shared Resource. In:
15th International Conference on Parallel architectures and compilation techniques.
pp. 13-22. Seattle, Washington, (2006).

20. Srivastava, A., Eustace, A.: ATOM: A System for Building Customized Program
Analysis Tools. Proceedings of the SIGPLAN /94 Conference on Programming Lan-
guage Design and Implementation, pp. 196-205. (1994).

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3298

14 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Frias

21. Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.: Discovering and
exploiting program phases. In: IEEE Micro. vol. 23, no. 6, pp. 84-93. (2003).

22. Tanenbaum, A. S.: Modern Operating Systems. sec. 2.4,2.5. 2nd edition, Prentice
Hall (2001).

23. C++ System function, http://wuw.cplusplus.com/reference/clibrary/
cstdlib/system/

24. Zlib Net, http://www.zlib.net/

25. Smith, J.E., Goodman, J.E., Goodman, J.R.: Instruction Cache Replacement Poli-
cies and Organizations. In: IEEE Trans. on Computer, C-34, no. 3. pp. 234-241,
(1985).

26. SPEC CPU2006, http://www.spec.org/

27. BZIP2 Workload, http://www.spec.org/auto/cpu2006/Docs/401.bzip2.html

28. H264 Workload, http://www.spec.org/auto/cpu2006/Docs/464.h264ref .html

29. SPEC CPU2000 and SPEC CPU2006 Cache Performance Analysis,
http://www. jaleels.org/ajaleel/workload

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3299

