
Improving Work�ows Execution on DAGMan by

a Performance-driven Scheduling Tool

David Monge1,3, Carlos García Garino1,2

1 Instituto para las Tecnologías de la Información y las Comunicaciones (ITIC),
UNCuyo

2 Facultad de Ingeniería, UNCuyo
3 PhD Fellowship CONICET

{dmonge, cgarcia}@itu.uncu.edu.ar

Abstract. In several scienti�c and business environments, the magni-
tude of problems require the execution of complex applications, like work-
�ows. Condor includes DAGMan extension in order to manage work�ows.
Such kind of applications are very popular because jobs can be reused
and distributed. Scheduling is a central issue in the assignation of re-
sources to work�ows. It can be seen as the process of assigning the re-
sources to the work�ow's jobs in a convenient way. This work presents
a performance-driven approach to make these assignments (also known
as mappings). The mappings generated determine in which resources the
jobs must be executed. The execution stage is delegated to the DAGMan
Work�ow System. This approach is compared with the standalone execu-
tion of the work�ow over DAGMan. Experimental results show that the
performance-driven approach improves the execution time of work�ows
in comparison with the standalone DAGMan approach.

Keywords: Work�ow, Scheduling, DAGMan, Performance, Optimiza-
tion

1 Introduction

In the last years, the distribution of work�ows over computational resources has
become a central issue on large applications execution. Work�ow applications
are being widely used on scienti�c and business environments, where computing
intensive programs are involved and a large amount of data must be processed.
Due to di�erent resources capabilities, di�erent mappings of the work�ow jobs
onto the resources can be de�ned, each one with di�erent execution costs. Search
of the optimal mapping is an NP-Complete problem, then e�orts are focused on
the search of sub-optimal mappings as can be seen on a previous work of the
authors [1]. These sub-optimal mappings are more costly than the optimal one
but it can be obtained in much less time. In this work a scheduler for optimization
of work�ows makespan is presented. The scheduler is used to determine the
mapping for the execution of the work�ow applications. Once the mapping has
been obtained, the work�ow is expressed in terms of DAGMan (Directed Acyclic

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3271



Graph Manager) [2] for its execution on a Condor Pool [3,4]. The results of this
performance-driven approach are compared with the results obtained by the
standalone DAGMan execution.

The structure of this paper is as follows: a background of work�ow scheduling
and the DAGMan work�ow manager is summarized on section 2, the explana-
tion of our approach to solve scheduling and execution problems is discussed on
section 3. Section 4 introduces the standalone DAGMan approach. On section 5
the de�nition of the experiments and the obtained results are explained, �nally
on section 6 the conclusions and future works are presented.

2 Background

2.1 Work�ow Scheduling

Work�ow scheduling can be de�ned as the process of �nding a mapping of work-
�ows jobs onto available machines in a convenient way [5]. Scheduling of work-
�ows is a complex task and di�erent approaches were been developed. In the
work [6] a theory for scheduling DAGs in Internet-Based Computing is intro-
duced. In the work of Malewicz et al. [7], the authors discuss a tool for optimiz-
ing DAGMan work�ows by prioritizing the jobs. Other approaches makes use of
heuristic-based methods [8,9,10,1,11].

There are two kind of schedulers according to their Planning Scheme [5]. The
�rst type of scheduler is the static scheduler, where the scheduling and execution
stages are separated, and the scheduling stage precedes the execution stage. The
second type is the dynamic scheduler, this type of schedulers combine both
scheduling and execution stages in one. Dynamic schedulers are more �exible
than static ones. Over dynamic schedulers it is easier to implement recovery
mechanisms, rescheduling based on resource-state changes.

2.2 DAGMan Work�ow System

DAGMan [2] is a Work�ow Management System implemented as a dynamic
scheduler for the execution of jobs based on their dependencies. DAGMan is
part of the Condor project and extends the Condor Job Scheduler [3] to handle
job dependencies. These sets of jobs and dependencies are known as work�ows.
DAGMan's work�ows are DAG-based, meaning that the work�ows can be rep-
resented by directed acyclic graphs (DAG). This work�ow representation and
others are discussed on [5].

In general, a DAGMan work�ow is described on a �le that contains the
de�nition of the participant jobs and the dependencies among them. A small
example can be seen on �gure 1.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3272



Fig. 1: Diamond DAG example.

There are two kind of jobs that can be used in DAGMan: i) Computation
jobs; and ii) Data Placement (DaP) jobs. A Computation job is any batch ap-
plication that can be processed on any of the universes o�ered by Condor and
managed by the Condor's Scheduler. Stork Server allows the management of
Data Placement tasks such as �le transfers, storage space allocation and release.
Note that DaP jobs were not used in this work.

Condor's Scheduler decides on which machine will be executed each one of the
jobs as the result of a matchmaking process [12,13]. This process is done taking
on account a resource requirements speci�cation for the job and the characteris-
tics of the available resources. The evaluation of a particular job's requirements
expression determines what machines are capable to execute that job. The de-
fault requirements expression for a job constrains the Operating System, the
Hardware Architecture, the Disk space and the Memory. Other requirement
constraints can also be speci�ed [14].

Among the candidate machines, the selection of the one that will handle a
particular job can be decided based on a preference expression known as rank.
The machine with the highest rank, is the machine selected for that job. It is
worth mentioning that these decisions are done at a job level without consid-
ering the other jobs. This is known as local decision making [5] and it has the
disadvantage that a good local decision can a�ect the performance of the en-
tire work�ow. So, improvements on DAGMan's work�ow execution times can be
made by having global decision makings in a previous scheduling stage.

3 Performance-Driven Work�ow Scheduling

In order to reduce work�ows execution times, is important to consider the ex-
ecution(transfer) times of jobs(data). Because a lot of machines with di�erent
capabilities might be available to execute the jobs, the task of search for a map-
ping that minimizes the makespan of the work�ow is an NP-Complete problem.
In a previous work of the authors [1], the bene�ts of an approximation approach
were discussed. The search of sub-optimal mappings allows to reduce drastically
the execution times of the algorithm with minimal loses on the solutions' qual-
ities (near-optimal approximate solutions). So, an approximation approach is a
good candidate to be applied on the work�ow scheduling problem.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3273



The objective of this work is to present a scheduling tool for the reduction
of work�ows' execution times. This scheduler is part of a Performance-driven
Scheduling Approach (PSA, for short).

The PSA process has three stages: i) Scheduling: determine work�ow map-
pings with global considerations, made by the scheduler; ii) Translation: a simple
process to express the work�ow in terms of DAGMan; iii) Execution: the man-
aging of the work�ow, made by DAGMan. The process can be seen on �gure
2.

Fig. 2: PSA approach process.

3.1 Scheduling Stage

The tool presented in this work is a performance estimation based scheduler
designed to search near-optimal mappings of jobs onto machines. The aim is
to reduce the makespan of the work�ows based on performance estimations.
This accomplished by modeling the scheduling problem as a CSOP (Constraint
Satisfaction and Optimization Problem). In order to reduce the complexity of
the problem, the problem is simpli�ed in a Pre-assignment stage. After that, the
problem is solved, and the schedule (mapping) is obtained. A small schema of
the Scheduler architecture is presented on �gure 3.

Fig. 3: Scheduler Architecture.

Modeling of the Scheduling Problem A scheduling problem is modeled as
a 4-tuple 〈X,D,C, f〉, where:
� X is the set of variables: Variables to model work�ow jobs (job variables)
and new dependencies (dependency variables) involving two jobs.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3274



� D is the set of domains: Each variable has its own domain. For job variables,
domains are conformed by the possible machines on which that job can be
executed. For dependency variables, domains are conformed by the values
after, before and independence. The �rst two values establish the direction
of the dependency, the third indicates that there is no relation between the
jobs.

� C is the set of constraints: Cycles constraints avoids the generation of de-
pendencies that produce cycles on the work�ow DAG. Cost constraint is a
soft constraint (it has a numeric value that points how good this variable
assignment is in comparison with others) that calculates an estimation of the
complete work�ow execution time (makespan). Overlap constraints avoid the
overlapping of jobs on a same machine at the same time.

� f is the optimization function: This is the function that will be optimized by
the algorithm. In this work the optimization of the function is the makespan
of the work�ow f = makespan. So optimization of that function conduces
us to the mapping that minimizes the total execution time of the work�ow.

The solution for a scheduling problem is an assignment of the variables of the
problem that satis�ed all the constraints with the optimal value of f .

Pre-assignment Stage Once the problem is expressed in terms of the 4-tuple
〈X,D,C, f〉, this must be solved. In order to reduce the number of combinations
of variable-values, a pre-assignment stage is carried out. This reduction of the
domains conduce us to a reduction of the complexity of the problem. A new
4-tuple 〈X,D∗, C, f〉 is generated with the reduced domains.

The domains selected to be reduced are those corresponding to critical jobs.
For this kind of jobs the domain is limited to the fastest machine. Critical jobs
are jobs that if they are delayed the makespan of work�ow is delayed too. Critical
jobs have a slack equal to 0. This value is calculated as slack = maxEndTime−
startT ime. Where maxEndTime is the maximum end time of the job that do
not delay the makespan. And startT ime is the start time of the job. The slack
represents how much time a job can be delayed without delaying the work�ow
makespan. All critical jobs conform a critical path.

The calculation of the jobs' start and end times are made as an estimation
considering an resources average capacity. The details of how this performance
information is used will be seen later on the subsection Performance Estimation.

Scheduling Algorithm As seen, the scheduler was implemented as a CSOP
(Constraint Satisfaction and Optimization Problem) solver based on Backtrack-
ing and Branch & Bound algorithms mixture. This algorithm was improved
with the use of heuristics for the pruning of the expansion tree generated by
the Backtracking algorithm. The less nodes to expand, the faster execution of
the algorithm to �nd the solution. The use of the algorithm without heuristics
cannot be considered because work�ow scheduling problems are NP-Complete
problems.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3275



Details about the scheduling tool can be found at previous works of the
authors [1,11]. Some of the heuristics were introduced on the work [11]. On it,
di�erent combinations of heuristics were tested and three of them were selected
as candidates for scheduling problem based on: the number of expanded nodes
and execution time of the algorithms; and the proximity to the optimal solution.
On this work a new heuristic for variable selection was developed (MRV for
critical-earlier jobs).

The heuristics set used for the scheduler on this work are:

� MRV heuristic prioritizing critical and earlier jobs (Variable Selection): This
heuristic selects the jobs to be mapped ordered by a 3 aspects measure:
i) selects �rst, jobs that can be mapped on a minor number of machines
(MRV). ii) selects �rst jobs that are critical (jobs with the minimum slack).
iii) selects �rst jobs that are earlier on the work�ow.

� Max Capacity heuristic (Domain Ordering) : Selection of the fastest machines
�rst for a particular job [11].

� Forward Checking (Constraints Propagation): The removal of inconsistent
values on variable domains on each assignment. For more details about the
techniques and heuristics, you can see [11].

� Sch-A (Performance Estimation) : An approximation heuristic of the execu-
tion performance of the jobs and the transfers performance [11].

Performance Estimation In order to estimate the execution time of the dif-
ferent mappings a Performance Model is used. The calculation of the total exe-
cution time of the work�ow is done with the use of the DAG representation of
the work�ow

The scheduler makes an intensive use of the DAG representation of the work-
�ow. The DAG representation is used to handle the new dependencies and for
make the performance estimations of the work�ow. That representation is con-
structed with components of the JUNG framework [15].

The Performance Model is used to estimate the execution times of the jobs
and the transfer times of the messages to be transferred. The estimation of
execution times is made based on equation 1.

Tex(job,machine) = PRjob/PCmachine (1)

Where PRjob denotes the processing requirement of the job measured in a
proper unit (MIPS for instance) and the processing capacity of the assigned
resource to the job is denoted as PCmachine. Te estimation of transfer times is
made based on equation 2.

Ttx(message,A,B) = size(message)/TRmachineA,machineB (2)

Where size(message) is the size of the message to be transmitted from ma-
chine A to machine B and TRmachineA,machineB is the transfer rate between
those machines.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3276



Visualization In order to see the mapping obtained by the scheduler, the JUNG
framework was used [15]. This is a Java framework for the analysis and visual-
ization of several kinds of graphs. Figure 4a shows the mapping of a work�ow
with 15 jobs, and �gure 4b shows the mapping a work�ow with 40 jobs. Each
circle represents a job, the colors indicate resources on which the machines are
executed.

(a) Mapping of a work�ow with 15 jobs. (b) Mapping of a work�ow with 40 jobs.

Fig. 4: Work�ow mappings visualization examples.

3.2 Translation and DAGMan's Execution Stage

Once the mapping has being determined, the execution of the work�ow on DAG-
Man begins. The tool generates a DAGMan's submit �le based on the work�ow
de�nition and the mapping obtained as result of the scheduling stage. For each
job of the work�ow, a Condor's submit �le is generated. This �le contains all
execution con�guration information for the job: executable �le, arguments, in-
put and output �les, etc. Each job is also constrained to be handled by the
resulting machine of the scheduling process. This is made by the de�nition of
the expression requirements = (Machine == the.mapped.machine). By doing
this, the Condor's matchmaking process is reduced to the handling of the job on
the speci�ed machine. A simple example can be seen on �gure 5.

Fig. 5: DAGMan translator example.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3277



Once the translation has �nished, the dag is submitted to DAGMan for its
execution. DAGMan submits all the ready-to-execute jobs to Condor according
to the dependencies. Once all the parents of a job have �nished, the job is
submitted to Condor. This process continue until all jobs have �nished.

4 The Standalone DAGMan Approach

In order to test the performance of the PSA approach, explained on section 3, the
execution of work�ows on DAGMan was carried out. The standalone DAGMan
approach process has two stages: i) Translation, and ii) Execution. The process
can be seen on �gure 6.

Fig. 6: Standalone DAGMan approach process.

The generation of the DAGMan's �les that describe the work�ow to be ex-
ecuted is made with the DAGMan Translator used in the PSA approach. But
this time, the translation is made based only on the work�ow de�nition. For the
Condor's submit �les of each job, the requirements expression is not set, allow-
ing Condor to select the machine for each job. The rank expression is setted
to rank = JavaMFlops, indicating to Condor the preference of machines with
more processing capacity (more MFlops).

Fig. 7: DAGMan translator example.

5 Experiments and Results

To study the bene�ts of the PSA execution approach over a pure DAGMan
approach, a set of tests was designed. For both approaches, were executed work-

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3278



�ows with a di�erent number of jobs and dependencies between them. These
work�ows were generated randomly to consider several kinds of work�ows in the
experiments.

5.1 Random Work�ow Generation

A work�ow can be characterized on it's structure by two parameters. One of
these is n, the number of jobs of the work�ow. The other is δ, the dependencies
density factor. δ represents the ratio of the number of dependencies of a work�ow
and the maximum possible ones. δ is a measure of the degree of independence
between jobs. Lower values of δ means more independence between the jobs,
and higher values of δ means more dependencies among them. Work�ows with
lower values of δ are often harder to map. The number of dependencies of a
work�ow can be determined by the δ factor. Let be mdn the maximum possible
dependencies number on a work�ow with n jobs, mdn can be calculated as:

mdn = n × (n − 1)/2 (3)

Then, the dependencies number dn of a work�ow with a particular value of
δ can be calculated as:

dn = δ × mdn (4)

For tests, work�ows with n = 5 . . . 50 step by 5 and δ = 0.4 . . . 0.8 step by 0.2
were randomly generated. For each work�ow family de�ned by 〈n, δ〉, 5 work�ows
were generated. The total number of work�ows solved is 10× 3× 5 = 150, these
work�ows were executed with the two approaches presented in this work.

Each work�ow job is generated with an associated number of required oper-
ations to be completed, that number represents the amount of processing tasks
needed by that job to �nish. The number of operations for the jobs were de�ned
in a range between 10000 and 60000. Each dependency is related to a message to
be transferred between the dependent jobs. Sizes of each message goes between
10 and 30 MiB.

5.2 Work�ow Jobs

Each one of the jobs used in the experiments is a Java program that simulates a
real job that could be executed as part of a work�ow. These jobs are called Test
Jobs. The aim of a test job is to check the existence of the input �les, to make
some calculation operations and to write a set of output �les to be transferred
to other jobs.

Each job receives as arguments:

1. number of operations : is the number of operations to execute, each operation
consist on 10000 random numbers generation, accumulation on a variable
and division.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3279



2. list of input �les : the names of the �les to be read by the program. Searched
on the programs directory.

3. list of local input �les : the names of the �les to be read by the program.
Searched on a machine's local directory. This is used when both parent and
child jobs were mapped on the same machine. In this case there is no need
to transfer the �le, so it's kept on the machine. This issue is exploited only
in the PSA approach because the source and target machines are known
beforehand.

4. list of output �les : the names and the sizes of the generated output �les.
Searched on the programs directory.

5. list of local output �les : the names and the sizes of the generated output �les.
Searched on a machine's local directory as the same as the local input �les.

6. local directory : the directory on the machine that executes the program, on
which the local input �les will be read and the local output �les will be
written.

5.3 Performance Data

In order to estimate the execution and transfer times of di�erent jobs and mes-
sages respectively, performance data is needed as been explained on the Perfor-
mance Estimation subsection. To use Performance Model, the processing capac-
ity of machines and the transfer rates must be known. To retrieve this informa-
tion, a benchmarking process must be carried out.

The processing capacity of a machine can be tested executing a test job with
a big number of operations to execute. The processing capacity of the tested
machine can be calculated as PC = Ops/Ttest. Where Ops is the number of
operations executed by the Test Job and Ttest is the time used by the machine
to complete the operations. A number of 10000 operations was used to estimate
the processing capacity of the machines.

To estimate transfer times of messages an estimation of the transfer rates
are needed. For this work the nominal values of the interconnection hardware
were used. To a more complete and accurate test, a benchmarking tool should
be used.

The characteristics of the machines pool are shown in table 1. Machine name,
processor, memory and the processing capacity resulting of the benchmark pro-
cess are listed:

Table 1: Processing Capacity Benchmark results.

Machine Processor Memory PC [ops/s]

compute-0-2 (storm cluster) Intel P4 HT 3.0GHz 1GiB 598.616

compute-0-3 (storm cluster) Intel P4 HT 3.0GHz 1GiB 598.950

compute-0-4 (storm cluster) Intel P4 HT 3.0GHz 1GiB 598.871

opteron0 (opteron cluster) AMD Opteron 242 1.6GHz 2GiB 995.161

opteron1 (opteron cluster) AMD Opteron 242 1.6GHz 2GiB 1079.471

compute-twister-1 (twister cluster) Intel Core2 Duo 3.0Ghz 4GiB 1784.189

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3280



The interconnection hardware between all the machines is 100Mibps. This is
the value used by the scheduler to make the transfer times estimation.

5.4 Results

In the �gures the average total execution times of the both approaches are pre-
sented. The results are grouped by the dependency density factor (δ). There is
one �gure per each value of δ, and the average total times for each approach
are presented ordered by the work�ows' numbers of jobs (n). For the scheduled
approach, the total time is calculated as the scheduling time plus the execution
time of the work�ow. For the pure DAGMan approach the total time is equal to
the execution time of the work�ow.

In the �gure 8 the results for the δ = 0.4 are presented. It can be seen that in
all cases, the PSA approach has the lower total time. The �gure also shows the
standard deviation of the total execution times for both approaches. In general,
the deviations are small, this means that the di�erent work�ow instances with
the same number of jobs (n) have had the same behavior.

 0

 500

 1000

 1500

 2000

 2500

 3000

 5  10  15  20  25  30  35  40  45  50

T
im

e[
s]

Number of jobs

Standalone-DAGMan PSA

Fig. 8: Total executions times of work�ows with δ = 0.4.

In the �gure 9 the results for the δ = 0.6 are presented. Similar results were
obtained for this tests set. In all cases, the PSA approach has the lower total
time. The standard deviations are small in all cases.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3281



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5  10  15  20  25  30  35  40  45  50

T
im

e[
s]

Number of jobs

Standalone-DAGMan PSA

Fig. 9: Total executions times of work�ows with δ = 0.6.

In the �gure 10 the results for the δ = 0.8 are presented. The results of this
tests set are similar to those obtained in the previous tests sets. In all cases, the
PSA approach has the lower total time. The standard deviations are small in all
cases.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5  10  15  20  25  30  35  40  45  50

T
im

e[
s]

Number of jobs

Standalone-DAGMan PSA

Fig. 10: Total executions times of work�ows with δ = 0.8.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3282



In order to compare both approaches the speedup measure is used. The
speedup for each group of work�ows with the same values for δ and n, is calcu-
lated as:

Sn,δ =
TDAGMan

n,δ

TPSA
n,δ

(5)

Where TDAGMan
n,δ is the average execution time of work�ows with n number

of jobs and a density of δ, using the Standalone DAGMan approach. And TPSA
n,δ

is the average execution time of work�ows with n number of jobs and a density
of δ, using the PSA approach. In �gure 11 the speedups for work�ow families
with densities 0.4, 0.6 and 0.8 (wfδ=0.4, wfδ=0.6 and wfδ=0.8) are presented.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 5  10  15  20  25  30  35  40  45  50

S
pe

ed
up

(S
δ)

Number of jobs

wfδ=0.4 wfδ=0.6 wfδ=0.8

Fig. 11: Speedups obtained for each work�ow family.

For the three families of work�ows, the more jobs composing the work�ow the
better the speedup. This is because if the work�ow has more jobs, the in�uence
of the bad selection of resources by Condor becomes more evident.

In order to obtain a representative measure of all work�ows with a particular
value of δ. The average speedup for δ is calculated as:

Sδ = avg(Sn,δ) n = 5 . . . 50 step by 5 (6)

The average speedups obtained for the three values of δ were: S0.4 = 1.333,
S0.6 = 1.483 and S0.8 = 1.711. Note that in general the best speedups are ob-
tained on the execution of more linear work�ows (is to say for largest δ in this

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3283



case). That is because more linear work�ows have longer critical paths (in num-
ber of jobs), then, errors introduced by the selection of non propriate machines
have a larger in�uence on the performance degradation. Speedups calculated to
compare both approaches can be expressed as percentages of the improvement of
work�ows' execution times according to expression: perc(S) = (1−1/S)×100%.
In table 2 some important results are presented.

Table 2: Average peedups and average, max and min speedup percentages.

δ Sδ perc(Sδ) min{perc(Sn,d)} max{perc(Sn,d)}
0.4 1.333 24% 9% 31%

0.6 1.483 31% 15% 41%

0.8 1.711 39% 11% 52%

6 Conclusions and Future Works

� The PSA approach improves the execution time of work�ows in comparison
with the execution of the same work�ows over the standalone DAGMan.
An average speedup of 1.333 was obtained for work�ows with δ = 0.4 . For
work�ows with δ = 0.6 an average speedup of 1.483 was obtained. And for
work�ows with δ = 0.8 an average speedup of 1.711 was obtained. It can be
seen that when δ increases (more linear work�ows with more communication)
the speedup obtained by the PSA approach increases.

� The smallest execution time gain is about an 9%, and the largest is about an
52%. The average execution time reductions obtained were 24%, 31% and
39% for work�ows with densities δ = 0.4, δ = 0.6 and δ = 0.8, respectively.

� The scheduling stage necessary for the PSA approach doesn't introduce a
big overhead in the total execution time of the work�ow. In the worst case,
the overhead introduced is about 507ms, reducing the total execution time
from 5023s (standalone DAGMan) to 1997s (PSA).

� The disadvantage of the PSA approach is that is di�cult to implement
rescheduling issues.

� A new performance estimation method must be considered in order to make
estimations for other kinds of jobs.

7 Acknowledgments

The �rst author want to thank CONICET, for the PhD fellowship granted.
The �nancial support provided by ANPCyT through PAE-PICT 2312 project
and MINCyT Czech Republic bilateral cooperation RC0904 project is gratefully
acknowledged.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3284



References

1. David Monge and Carlos García Garino. A constraint optimization based scheduler
for distributed computing work�ows. In Proceedings of the First Symposium on
High-Performance Computing (HPC2009) in Latin America, 38 JAIIO , Mar del
Plata, Argentina, 2009.

2. Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid. In
Grid Computing: Making the Global Infrastructure a Reality , pages 11�33, 2003.

3. Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Condor: a
distributed job scheduler. pages 307�350, 2002.

4. Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed Computing in
Practice: The Condor Experience. Concurrency and Computation: Practice and
Experience, 17:2�4, 2005.

5. Jia Yu and Rajkumar Buyya. A Taxonomy of Work�ow Management Systems for
Grid Computing, Apr 2005.

6. Grzegorz Malewicz, Arnold L. Rosenberg, and Matthew Yurkewych. Toward a
theory for scheduling dags in internet-based computing. IEEE Transactions on
Computers, 55:757�768, 2006.

7. G. Malewicz, I. Foster, A.L. Rosenberg, and M. Wilde. A tool for prioritizing
dagman jobs and its evaluation. High-Performance Distributed Computing, Inter-
national Symposium on, 0:156�168, 2006.

8. Suraj P, Linlin Wu, Siddeswara Mayura Guru, and Rajkumar Buyya. A particle
swarm optimization-based heuristic for scheduling work�ow applications in cloud
computing environments, 2010.

9. Yingchun Yuan, Xiaoping Li, Qian Wang, and Xia Zhu. Deadline division-based
heuristic for cost optimization in work�ow scheduling. Inf. Sci., 179(15):2562�2575,
2009.

10. Maria M. Lopez, Elisa Heymann, and Miquel A. Senar. Analysis of dynamic
heuristics for work�ow scheduling on grid systems. In ISPDC '06: Proceedings of
the Proceedings of The Fifth International Symposium on Parallel and Distributed
Computing, pages 199�207, Washington, DC, USA, 2006. IEEE Computer Society.

11. David Monge and Carlos García Garino. Heuríticas novedosas de constraint op-
timization aplicadas al scheduling de work�ows de computación distribuida. In
Proceedings of V Encuentro de Investigadores y Docentes de Ingeniería, EnIDI
2009, Los Reyunos, San Rafael, Argentina, 2009.

12. Rajesh Raman. Matchmaking frameworks for distributed resource management .
PhD thesis, 2000. Supervisor-Livny, Miron.

13. Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmaking: Distributed
resource management for high throughput computing. In HPDC, pages 140�, 1998.

14. Condor manual: http://www.cs.wisc.edu/condor/manual/v7.4/index.html .
15. J. Madadhain, D. Fisher, P. Smyth, S. White, and Y.B. Boey. Analysis and Visu-

alization of Network data Using JUNG. Journal of Statistical Software, 10:1�35,
2005.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3285


