Towards parallel solution of continuous problems
by means of a general finite/spectral-element
oriented C/C++ framework

Javier Quinteros"? and Alejandro D. Otero?34

javier@gfz-potsdam.de aotero@fi.uba.ar

! Deutsches GeoForschungsZentrum GFZ, Postdam, Germany
2 FCEyN, Universidad de Buenos Aires, Argentina
3 FI, Universidad de Buenos Aires, Argentina
4 CONICET, Argentina

Abstract. In this work, we present the design and implementation of a
highly modular and flexible software framework to implement numerical
models based on the finite element method (FEM) and its extension to
deal with distributed problems. This work improves the current imple-
mentation by the adition of parallel calculations capabilities by means
of the substructure technique applied to solve problems by the FEM in
clusters of computers using the MPI protocol. We considered the solu-
tion of a general Poisson problem as a test case to conduct experiments
in order to evaluate the scaling capabilities of our code. Conclusions are
extracted with focus on future lines of development.

1 Introduction

The design of a numerical model goes through different stages until it can be
considered functional and satisfactory results are obtained. A correct formulation
of the problem is needed for numerical models based on the finite element method
(FEM) in order to assess, from a mathematical point of view, that a proper
solution will be obtained. The equations, their discretization and the element
employed are an integral part of these. However, the initial design stage includes
not only the mathematical formulation, but also the software design.

As in many numerical problem, one of the most important features is the
ability to solve bigger problems with finer meshes. As the amount of resources
needed (namely memory and time) grow exponentially, the idea of dividing it
into smaller sub-problems was studied by means of different approaches.

2 General Purpose Finite Element Framework

Work on parallel FEM implementation based on Object-Oriented Programming
technics can be traced back, for example, to the work of Modak and Sotelino [1],
Sonzogni et al. [2] and references therein. Here, we present the design and im-
plementation of a highly modular and flexible software framework to implement

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3195

numerical models based on the FEM and its extension to deal with distributed
problems. Its potentiality is based on proper abstractions. No underlying elemen-
tal formulation needs to be known in order to code the resolution of a problem.
In addition, the implementation of algebraic operations is isolated from the ele-
mental formulation.

This work improves the implementation already presented by Quinteros et
al. [3,4] by means of the substructure technique to solve problems by the FEM
in clusters of computers using the MPI protocol.

2.1 Proposed Design

Identification of Stages and Entities. The finite element method is widely
employed to solve partial differential equations (PDE). It is well known that,
although many types of elements with their own properties exist, the FEM the-
ory does not depend on a particular element. The FEM can be considered a
framework in which many specific aspects of the formulations can vary.

From a high level point of view, the following stages can be identified:

— domain description,

— domain discretization,

— element matrices calculation,

— numerical integration in the specified Gauss points,
— assemblage of global matrices/vectors,

— imposition of boundary conditions and

— resolution of the equation system, among others.

Every stage is defined as independent from the others. Usually, the variations
in the formulations can be achieved by means of appropriate parameters; thus,
isolating the different processes. As in a sequential analysis of the operations
many independent and generic stages can be defined, different layers can be
identified inside the domain. The spatial concepts related to the discretization,
like domain, element, boundary condition, node and Gauss point, introduce a
new abstraction level, not in a sequential sense, but from an entity point of
view. One can see in figure 1 an example of a domain that is formed by two
elements. The elements are defined by four nodes located at their corners. The
numerical interpolation should be calculated in four Gauss points.

Based on these concepts, the class diagram that can be seen in Fig. 2 is
proposed where only the most important attributes of each class are included.

The class Domain is the one that includes all the information needed to de-
scribe the model by means of a set of elements and nodes stored in the attributes
Elements and Nodes. Once the domain is known, every boundary condition is
stored in an instance of the class Boundary and the set of all the boundary con-
ditions that determine the problem is stored in another attribute of the Domain
class (Boundaries).

It is important to note that the element is determined by a set of nodes that
are connected. However, these nodes do not belong to the element because many

39JAI10 - HPC 2010 - 1SSN: 1851-9326 - Péagina 3196

Gauss point

X X X X
X X X X
Node
\.\\
I
Element Dommn/’

Fig. 1. Conceptual view of a domain composed by two elements. The elements are
defined by four corner nodes and the numerical integration is calculated in four Gauss
points. It is shown only as an example, as it is one of many element types that can be
employed.

GaussPoint

r
5

weight
h
hr
hs

Element

IdModes
VuniformGradient

Savel)

1
gpsiul calc_poisson()

calc_laplace()

1. calc ev roperties
_evp() 1
I Jacoblan()
0.1
State currentState

Temperature
Pressure
Viscosity
StrainRate phides
EffPlasticStrain currentState .
Gm .
Alfa 0.1 Hode
timestep %
devStress Y
Save() Saval)
Setviscosity()

Elements

‘;“‘*~s

Name Materials Save()
Density

K

G

Domain

MaterialType

*

M
HeatConductivity
Save()
SetSigmay()
1/ Properties
* | Boundarles
Boundary
idMode
* Markers X
B
Markeh Temperature
%
Savel)
odes 4
r
5
idElem
idvatType
Stress

Fig. 2. Partial class diagram of the model.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - P4gina 3197

of them are located on the border and are shared with another element. Thus,
only the references to the nodes (pNodes) as well as their global id (idNodes)
are stored in the class Element.

To calculate the stiffness matrix of each element, a numerical integration
in the Gauss points determined by the order of interpolation is required. The
position of the Gauss points is identical for every element because the integration
is actually made in the master undeformed element. Thus, this set of Gauss
points is stored in the attribute gps in Element, gps being declared as a static
variable.

This way of storing the Gauss points is very flexible at the moment of the
implementation of a selective reduced integration [5], which can be defined in-
cluding only the ones that will be employed to integrate and modifying its weight
accordingly. For the operations that cannot be computed without the whole set
of Gauss points, another attribute called gpsfull is included in Element to be
able to perform a full integration.

The State class stores variables (e.g. stress, strain, effective plastic strain)
that are calculated by the model and must be stored arbitrarily in the Element
or the Node. One can see in figure 2 that the State class is related to the Element
and the Node class, by means of a pointer called currentState. Once the type
of element is defined, as a part of the discretization passed as a parameter, it is
clear for the model where the States will be stored.

Interface with Solvers and Mathematical Libraries. It is known that the
stiffness matrix associated with every instance of the Element class is computed
by means of the multiplication of small dense matrices related to geometrical
and compositional properties of the element. There are many thoroughly tested
libraries for linear algebra operations that can be employed to address the ma-
trices operations, being Lapack [6] a standard de-facto.

The class Matrix is designed to store all the dense matrices and vectors that
take part of the framework. It also isolates the model from the particular Lapack
library by means of an interface that provides a basic set with the most common
operations for matrices related to the FEM.

This class provides a simple, natural and practical way of manipulating ma-
trices. Overloading of operators and polymorphism were heavily used in order
to achieve an intuitive notation, preventing obscure coding techniques.

In problems with a sufficient number of elements, the global mass and stiffness
matrices will be very sparse and their size in memory would be of the order of
the square of the number of total nodes. Another class called SparseMatrix was
designed for this type of matrices, in order to improve the storage in memory
and the time needed to process some operations. This class works as an interface
that isolates the framework from the sparse matrix library which is actually used
to solve the global system of equation.

At present the SparseMatrix class can interface with three different libraries:
PARDISO [7], MUMPS [8] and SuperLU [9]. Thus, we have several options for
solving systems of equation sequentially and parallelly, both in shared and dis-

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3198

tributed memory computers. These libraries provide fast and tested procedures
to solve linear systems stored in sparse matrices.

2.2 Elemental Level Abstraction

Up to this moment, no mention has been made of the type of element employed,
mainly because the generic schema of resolution does not need to know the
element implemented to solve the problem. By means of the proposed design
and interfaces, a nearly total freedom from the element implementation can be
obtained. In the proposed design the Element class is defined as a base class
that provides a common specification that the different types of element must
implement. It also includes the specification of the functions to solve the different
types of equations. All the element methods that cannot be defined in a generic
way must be implemented in a separated class that inherits the specifications
from Element.

The Liu class that can be seen in Fig. 3 is an example of a particular el-
ement implementation. In its simplest form, the solution of partial derivative
equations by means of the FEM implies, for each element, the evaluation of ma-
trix products (that depends on the problem) in some points called Gauss points.
These evaluations are multiplied by a weight factor and summed to obtain the
elemental stiffness matrix. From all these tasks, only the evaluation in a spe-
cific Gauss point needs information about the number of nodes that the element
have. That is the main reason to implement in the Element class a method called
calc_equation, where all the necessary steps to get the element stiffness matrix
related to the problem (equation) are implemented with the exception of the
specific evaluation in the Gauss points, that must be defined in a method called
eval_equation implemented in the derived class (Liu in this case) and that
receives the Gausspoint where the integration will take place as a parameter.
The schematic diagram of an equation resolution is shown in Fig. 3. In this par-
ticular case it is the Poisson equation. However, many different equations can
be calculated in the same way.

It can be seen that the class that implements an specific element (Liu) passes
the messages to the Element class, where all the common code was actually
implemented. The only method that is executed in Liu is eval_poisson, which
evaluates the integration in a specific Gauss point.

2.3 Implemented Elements
As an example of the flexibility of the developed model, four types of two-

dimensional quadrilateral element with different features have been implemented.

Four-Node Isoparametric Element with Reduced Integration. A two-
dimensional, quadrilateral element with four nodes proposed by [10] was imple-
mented. This element uses selective reduced integration to avoid the volumetric
and shear locking and to reduce the computational time needed. This element

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3199

1: SparseMatriz()
: SparseMatrix

3t cale_poissan() : Matriz

\
\
f
rhy ele_poisson() : Matfix
I
1]
I
\

\
\
I
T
\
I !
: eval_poisson(op | G. il sRoint) : MatT\x
|

I —

Repeat for

every Element 6: fssemble2D(K_e : Matri | repeatiar

\
\
\
every GaussPoint ‘
\
\
|
:
‘
\

| I
[I
| |
| |
L
3 |

|

|

[

)

& getTemperature

]

Repeat for every 91 imposeBEL)

Boundary Condition

10: impozeBcl)

Fig. 3. Schematic diagram from the resolution of the Poisson equation.

was designed to be applied in elasto-plastic solid mechanic problems. It uses
a Taylor expansion to compute the strain rate, that is split into its deviatoric
and volumetric part. To diminish the volumetric locking, selective reduced inte-
gration is applied [5]. The elemental formulation asserts the diminishing of the
volumetric locking, even if it is integrated at just one Gauss point. However,
this is usually not enough in the case that a plastic deformation front should
be accurately detected in an elasto-plastic problem. That is the main reason to
integrate at two Gauss points.

Eight-Node Isoparametric Element. It is known that the classical quadri-
lateral four noded element does not pass the Brezzi-Babuska condition [11],
which is necessary to assert the solution convergence and avoid collateral effects
like checkerboard pressure distribution. That is why other elements were imple-
mented, as the two-dimensional quadrilateral eight noded element, without the
need of special characteristic.

Strain rate is computed in the standard way by means of the gradient matrix
that includes the shape functions derivatives. No expansion in a Taylor series
is made and the integration is performed in the usual full set of Gauss points
related to the second order of interpolation inside the element [11].

Nine-Node Isoparametric Element. In order to increase the richness of the
variety of available elements in the framework, a two-dimensional bi-quadratic
nine-node isoparametric element [11] was implemented. This element presents a
better behavior than the eight-node element presented above due to the presence

39JAI10 - HPC 2010 - 1SSN: 1851-9326 - Pagina 3200

of the “bubble” function associated with the center node. Thus, the extra node
results in a more precise but also a more expensive element.

Variable-Order Spectral Isoparametric Element. Another type of element
implemented is a parametric spectral isoparametric element [12,13]. In these el-
ements the order of the interpolation functions is set by means of a parameter
giving raise to a family of elements of variable order. The main characteristic
in this family is that nodes are not uniformly distributed inside the element,
but on a Lobatto grid. Besides, all the integrals are computed numerically us-
ing the Gauss-Lobatto-Legendre integration rule which uses those same points
as integration points. In our case we have used spectral elements with order
ranging from 4 to 20. The particular case of the spectral element of order 2
(biquadratic) corresponds to the classical nine-node element that uses the usual
Gauss-Legendre integration rule.

3 Improvements for parallel execution

The Domain class was improved in order to read only the subdomain that
should represent instead of the whole domain. In addition, a new class, called
Subdomain, was implemented to deal with the multiplicity of mappings between
internal and external DoF of the subdomain itself and also, of the subdomains
that are related to it in a tree-structured communication [14].

The communication between a pair of nodes in the cluster is solved in a very
simple way, from the point of view of the programmer who handles the instances.
All the classes in the framework include the method Save, which stores the
instance into an output stream. These same classes have a constructor, with an
input stream as the parameter, which reads the instance from the stream and
creates it in memory. No more methods than these are needed to move instances
in a transparent way between computers in the cluster. The bytes located at the
output stream are given to the MPI_Send command and the same is done with
the bytes received by MPI_Receive, which are given to the constructor of the
class.

The assemblage of the global stiffness matrix is modified in order to skip
the external or internal nodes when necessary. Namely, the degrees of freedom
are assembled in only one of the four global stiffness submatrices related to the
Schur complement technique (see later subsection 4.3).

4 Mathematical Model

4.1 Mathematical Problem

As a test case we considered the following version of the Poisson problem [15] of
finding the solution ¢ in a domain 2 = [0, 1] x [0, 1] to the equation

~V%=f, (1)

39JAI10 - HPC 2010 - 1 SSN: 1851-9326 - Pagina 3201

with homogeneous Dirichlet boundary conditions.
The right hand side function f in equation 1 was chosen such that the exact
solution is
¢ =e"sin(rx)sin (ry),
which gives

f=—e{(y* —2n° +2?) [sin (7 z)sin (7 y)] +
27 [y cos (wa)sin(wy) + xsin (7 x) cos (ry)]}.

This way, we knew a priori the exact solution of the problem to which we could
compare the results obtained from our numerical simulations.

The partial differential problem of equation 1 can be reformulated in its weak
form [16,17] as: find a function ¢ € H such that:

//QVQp-V¢dQ://wadQ Vip € H. (2)

This is the formulation required to implement the FEM to find an approximation
of equation 1. In the remaining of the section we will describe the discretization
procedure followed in order to arrive to the final system of equations by means of
finite elements disregarding which type of element is used. In our implementation
we have been working with the elements presented in section 2.3

4.2 Discretization

In the FEM the analysis domain is decomposed into subdomains called elements;
in such a way that integral in equation 2 can be divided in several integrals over
each element. The unknown functions are written in terms of interpolating func-
tions which are particular of the type of element implemented. The collection of
all the shape functions of the elements in a discretization form a basis of func-
tions over the whole domain which generates a functional space the approximate
solution will belong to.
In the general case, the unknown function ¢ is expressed inside an element
as
& = hi(r,s), ¢* i=1.N, (3)
where h; is the interpolation function associated with elemental node ¢, r and s
are the coordinates in the master or natural square element with —1 <7, s <1,
¢" is the value of the function ¢ in node i and N is total the number of nodes in
the element. Here, and in the rest of the paper, we adopt the Einstein summation
convention over repeated indices. Equation 3 can also be written in matrix form
as
¢ =H,

where H = [hl ho - hN] and ®°¢ = [(bl @ (bN]T. The spatial derivatives
of the unknown function can be arranged in matrix form as

9¢

V=185 =B®°,

dy

39JAI10 - HPC 2010 - 1 SSN: 1851-9326 - Pégina 3202

where
Ohy dhy . Ohn
oy Oy oy
This way, interpolating the test functions 1 such as the unknown ¢ and
mapping the actual element in physical space to the natural element, the integral
equation 2 can be split into elemental contributions such that the left hand side
takes the form

1 1
// ViV dQe:/ / T BT B ®°J drds, (4)
e —1J-1

where J is the determinant of the jacobian matrix J of the transformation from
the physical space coordinates (z,y) to the natural element coordinates (r, s).
The matrix J is also used to calculate the elements of matrix B from the deriva-
tives of the interpolation functions with respect to the natural coordinates. The
right hand side of equation 2 can be written as

//wadrzz/_11/_11qzeTHTderds. (5)

Since equation 2 must be true for every function in the space generated by the
set of interpolation function we can chose the vector ¥¢ to be formed by all
zeros except one element at a time getting as many equations as nodes in the
element. Also, as the vector ®¢ is independant of the coordinates we can take it
out of the integrals of equations 4 and 5 giving rise to the elemental system of
equations

K°®° =F°, (6)

1 1 1 1
Kez/ / BTBJdrds and Fez/ / H” fJdrds.
—1J-=1 —-1J-1

Matrices K¢ and F¢ are calculated by numerical integration at every element
and then assembled into corresponding global matrices K and F according to
the correspondence between local and global node numbering, arriving to the
final system of equations

where

K®&=F. (7)

4.3 Substructuring by means of the Schur Complement Technique

The idea of the substructuring technique is to divide the problem of solving
the equation 1 over the whole domain {2 into several sub-problems to be solved
locally in every processing unit. Then, the contribution of every sub-problem
to the global “stiffness” is calculated and the new (and much smaller) global
problem is solved.

39JAI10 - HPC 2010 - 1 SSN: 1851-9326 - Péagina 3203

Mathematically this technique can be presented as follows. The global domain
is to be divided into sub-domains composed by several elements each. Consid-
ering one of these sub-domains, its nodes (and correspondingly its degrees of
freedom (DoF')) can be divided between those belonging only to elements of the
current sub-domain, i.e. internal nodes, and those shared with elements in dif-
ferent sub-domains, i.e. external nodes. Considering the system in equation 7,
obtained by the assemblage of the elements of the sub-domain, we can rearrange
the equations and unknowns in a way that all the interior nodes appear alto-
gether and the same for the exterior nodes. Then, indicating with the subscript
e the set of exterior DoF and with ¢ the set of the interior ones, we can rewrite
equation 7 for the sub-domain s as

] o] = [¥
Now, we can obtain the Schur complement of block K, in matrix K° to
find the contribution of sub-domain s to the global problem stiffness K%, =

K3, — K2, K2, ' K3 . The system of equation 8 can then be expressed only in
terms of the exterior DoF as

SSch (I)z = SSch (9)

where F%_, = F$ — K2, K5 ' F$ is the corresponding load term.

The matrices K¢, and vectors Fg_, of every sub-domain are assembled into
global reduced matrix and vector to form a system of equations in terms of DoF
only associated to nodes shared by elements in different sub-domains. Once this
system is solved we can recover the interior nodes of each sub-domain from the
second line of equation 8.

When applying this technique there are two stages of solving systems of equa-
tions whose matrices are sparse. One is the local solution leading to equation 9
and the recovering of the interior DoF. This solution is carried on concurrently
for all the sub-domains locally in each processing unit. The second stage is global
and only one system of equations is solved at a time. Due to this characteristic,
different solvers could be used for each stage.

5 Numerical Experiments

In this first stage we tested our implementation solving the test case for different
regular meshes composed by 8-node 2D quadrilateral elements. We focused on
efficiency of data communication trying to evaluate how parallel FE problems
could be efficiently implemented following the philosophy of the framework. To
this end, we used the interface to PARDISO to perform the system of equations
solution sequentially at subdominial as well as global level. In this case we did
not make use of PARDISO capabilities of parallelization what we plan to study
in detail when analyzing different solvers options.

We tested meshes composed by subdomains with different number of elements
ranging from 100 elements per subdomain to 40000 elements per subdomain. The

39JAI10 - HPC 2010 - 1SSN: 1851-9326 - Pagina 3204

number of subdomains in each mesh was varied from 1, meaning no subdivision,
to 64 subdomains. We divided the solution procedure into stages in order to time
each one in detail. These stages are:

. Assemble of the elemental matrices and load vectors,

. Factorization of K, from equation 8,

. Computation of K¢, and Fg_,,

. Reduction and assemble of K¢ _, and F%,, to form the global system of
equations 7,

. Solution of the reduced global system,

6. Broadcast of the external DoF solution and recovering of the internal DoF

solution.

N R

ot

We evaluated the weak and strong scaling capabilities of our code. The total
time as the number of subdomains increases for a fixed subdomain size is shown
in figure 4.

—+— 100 Elem/SD

10% k| —*— 400 Etlem/sD Aj’:/;/ﬁ l
—<— 2500 Elem/SD

—©— 10000 Elem/SD W/

10" k| —*— 22500 Elem/SD
—b>— 40000 Elem/SD

-1
w %
2
10
2 3 5
10 10 10 10

Elements

Time [s]

Fig. 4. Total time with respect to problem size for different subdomain sizes.

Weak scaling can be seen as moving along lines of constant number of el-
ements per subdomain, the continuous lines in the figure, while strong scaling
may be interpreted as moving along a vertical line keeping the problem total
size fixed. This is done in figure 5 for a problem of 160000 elements in total. The
dotted line in that figure represents a linear speedup situation where the time T},
for solving the same problem using p subdomains is

39JAI10 - HPC 2010 - 1 SSN: 1851-9326 - Pégina 3205

with T}, the time for solving in 1 subdomain. As shown in the figure our code
scales better than in the linear speedup situation. This is not the expected be-
havior, it could be explained since we made all the testing for this work using
only direct sequential solvers for the systems of linear equations arising from
the FEM. Those solvers, based on factorizations of the matrix followed by back
and forward substitutions are typical algorithms with O(n?) complexity. Thus,
in this case, it is faster to solve several small problems than few bigger problems
despite the cost of communications and global solution.

200

150 —— 160k elem

32 N linear speedu
100 P P

70

S01
401
301

Time [s]

201

10

4 8 16 64
Subdomains

Fig. 5. Time elapsed for a constant problem size of 160000 elements.

In order to study the behavior of our code under weak scaling, i.e. when
increasing the number of subdomains with fixed number of elements per subdo-
main, the speedup of a parallel application in such a situation is defined as

s 0T
P

where, for a given subdomain size, T3 is the time required to solve the problem
with no subdivision in 1 processor and T), is the time required to do so in p
subdomains, each in one processor. In figure 6 we show the speedup obtained for
meshes with increasing number of subdomains in order to test the weak scaling
capabilities of our implementation. In this case, linear speedup means that S = p
and one can solve p subdomains distributed in p processors in the same time that
one solved 1 subdomain sequentially. This case would have resulted in horizontal
lines of constant time in figure 4, and the increase in time means a loss in speedup.
Linear speedup is represented by the dotted line in figure 6. From this figure two
characteristics become evident: the speedup improves with the problem size and
the speedup deteriorate as the number of subdomains increase.

39JAI10 - HPC 2010 - 1 SSN: 1851-9326 - Pagina 3206

601 | ... Linear '/'/,/ -

—+— 100 Elem/SD
50 | —*— 400 Elem/SD
—<— 2500 Elem/SD

4ol | —©— 10000 Elem/sD e

e —&— 22500 Elem/SD d
3 —— 40000 Elem/SD
[30 - e
Q.
7 7

./',

p

20+ o

101

0 10 20 30 40 50 60
Subdomains

Fig. 6. Speedup for different subdomain sizes in term of the number of subdomains.

In order to explore the reasons for that behavior, in figures 7 and 8 we
present measurements of the time elapsed in each stage of the computation
with increasing number of subdomains for relatively small and large number of
elements per subdomain, respectively. Figure 7 show that time is kept constant
in the first 3 stages which seems logical as those imply purely local operations.
On the other hand, the assemble of the global system of equations is done by
means of a reduce-like operation with communication from every process to the
headnode. Although this operation was coded as a tree-structured sending and
partial assemble operation, the time increases with the number of subdomains.
The most time consuming stage in this case is the solution of the global system
of equations. As already said the solution is computed by a sequential solver
which means that no parallelization is made at all. Considering that for the
bigger cases the time for the system solution represents some 50 % of the total
time it turns out clearly what the cause of the speedup loss is. The last stage,
solving the interior nodes DoF, is negligible in all cases we studied.

Figure 8 shows essentially the same general figures; but in this case, as each
subdomain is bigger, the proportion of time consumed in purely local operations
is bigger giving rise to a better speedup. The most time consuming stage is
the computation of K¢ ; which is done by back and forward substitutions with
several right hand sides. One point to be highlighted here is that the time of this
stage exhibit some jumps for certain increases in the number of subdomains. As
pointed out before this stage implies only local operations so those jumps can
only be attributed to resource saturation problems. This behavior has appeared
when solving other problems with high number of elements per subdomain while
when this number is kept medium sized the behavior did not show up.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3207

2500 elements per subdomain

- Assemble
- Kii factor
ar \:’ K., calc
35t [K assemble

al - Solve Ext
- Solve Int

14 8 16 32 64
Subdomains

Fig. 7. Time of processing each stage with constant subdomain size of 2500 elements
per subdomain.

22500 elements per subdomain

200— T T v
| -Assemble
180 - KII factor
1601 :| KWh calc
140 :] K assemble
- Solve Ext
- 120 - Solve Int
o -
£ 100
=
80
% /
40
20
0
14 8 16 32 64

Subdomains

Fig. 8. Time of processing each stage with constant subdomain size of 22500 elements
per subdomain.

39JAI10 - HPC 2010 - I SSN: 1851-9326 - Pégina 3208

6 Conclusions and a pathway to future improvements

The main objective of this work was to make a first approach to solve parallel
FE problems based on the framework proposed in [3,4]. This set of experiments
and results will help us to identify where to put future efforts in order to improve
the performance of this implementation. Considering the results exposed so far
it becomes clear that the focus in future research should be on the solution of
the system of equations, both solving of the system itself and what now is the
assemble of the matrix and load term. All the intrinsic local stages and even the
solution of internal DoF which require communication scale well so they should
not be problematic, but for problems with increasing size the computation of
the Schur complement matrix takes too much time compared with other stages.

Regarding the solution of the system of equations there are several steps to
follow in order to achieve better scalability and performance. As said before, up
to now we tested the code using the PARDISO interface only in a sequential
way. The first alternative to be tested is to use a multifrontal parallel direct
solver (MUMPS) for which the framework has an interface already available.
We hope that the good scaling properties of MUMPS will help to improve the
time and speedup of the system solving stage. Further improvement could be
achieved using MUMPS capabilities to handle distributed matrices which would
eliminate the need of communicating and assembling the global stiffness matrix
of the reduced system.

Another line to investigate is the use of iterative solvers which are an fre-
quently followed alternative when solving systems with large number of equa-
tions. They usually require much less communication as one can manage the
system distributed over each processor. This way you do not need either to com-
municate and assemble the reduced system from each subdomain. The amount
of communication in this case will be dictated by the number of iterations be-
fore converging to the solution. To reduce them, good preconditioning techniques
should also be studied. Extra time savings could be achieved in this case as it
will not be necessary to compute the Schur complement matrix explicitly since
its effect on a vector could be evaluated in each step in a more economical way.

As the relative weight of the stages is dependent on the type of particular
element used, we plan to compare the effect of different elements. Thanks to the
versatility of the framework this can be done with almost no code modification.

Up to now we have tested our implementation only using perfectly regular
meshes. To allow for more realistic simulations it has to be able to work with
more general ones, in particular non regular meshes with, typically, unbalanced
subdomains. We plan to test how this affects the performance of the code and
what amount of imbalance is to be tolerated during the partitioning of the
domain in order not to penalize the simulation process.

Acknowledgments

Part of this research was supported by founds made available by Project PICT
1581, Agencia Nacional de Promocién Cientifica y Tecnolégica.

39JAI10 - HPC 2010 - 1 SSN: 1851-9326 - Pagina 3209

References

10.

11.

12.

13.

14.
15.

16.

17.

. Modak, S., Sotelino, E.: An object-oriented programming framework for the par-

allel dynamic analysis of structures. Computers & Structures 80(1) (2002) 77-84
Sonzogni, V., Yommi, A., Nigro, N., Storti, M.: A parallel finite element program
on a Beowulf cluster. Advances in Engineering Software 33(7-10) (2002) 427-443
Quinteros, J., Jacovkis, P.M., Ramos, V.A.: Diseno flexible y modular de modelos
numéricos basados en elementos finitos. In Elaskar, S.A.; Pilotta, E.A., Torres,
G.A., eds.: Mecanica Computacional. Volume XXVI., Cérdoba, Argentina, Aso-
ciacién Argentina de Mecdnica Computacional (Oct 2007) 1724-1740

Quinteros, J., Ramos, V.A., Jacovkis, P.M.: An elasto-visco-plastic model using
the finite element method for crustal and lithospheric deformation. Journal of
Geodynamics 48(2) (2009) 83-94

Hughes, T.J.R.: Generalization of selective integration procedures to anisotropic
and nonlinear media. International Journal for Numerical Methods for Engineering
15 (1980) 1413-1418

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
users’ guide. Third edn. Society for Industrial and Applied Mathematics, Philadel-
phia, PA (1999)

Schenk, O., Gaertner, K., Fichtner, W., Stricker, A.: Pardiso: a high-performance
serial and parallel sparse linear solver in semiconductor device simulation. Future
Generation Computer Systems 18 (2001) 69-78

Amestoy, P.R., Duff, 1., L’Excellent, J.Y.: Multifrontal parallel distributed sym-
metric and unsymmetric solvers. Computer Methods in Applied Mechanics and
Engineering 184 (2000) 501-520

Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal
approach to sparse partial pivoting. STAM J. Matrix Analysis and Applications
20(3) (1999) 720-755

Liu, W.K., Hu, Y.K., Belytschko, T.: Multiple Quadrature underintegrated finite
elements. International Journal for Numerical Methods in Engineering 37 (1994)
3263-3289

Bathe, K.J.: Finite element procedures. Prentice Hall, Englewood Cliffs, New
Jersey, USA (1996)

Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a
channel expansion. J. Comput. Phys. 54 (1984) 468-488

Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the
incompressible navier-stokes equations. J. Comput. Phys. 97 (1991) 414-443
Pacheco, P.: Parallel Programming With MPI. Morgan Kaufmann (October 1996)
Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and The-
ory. Volume 34 of Springer Series in Computational Mathematics. Springer (2004)
Becker, E.B., Carey, G.F., Oden, J.T.: Finite Elements: An Introduction. Volume 1
of Texas finite element series. Prentice Hall, Englewood Cliffs, New Jersey, USA
(1981)

Carey, G.F., Oden, J.T.: Finite Elements: A Second Course. Volume 2 of Texas
finite element series. Prentice Hall, Englewood Cliffs, New Jersey, USA (1983)

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3210

